
TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 1

TURING MACHINE

DEFINITION

A Turing machine M is a 7-tuple, namely (Q, ∑, ┌, δ, qo. b, F), where

1. Q is a finite nonempty set of states.

2. ┌ is a finite nonempty set of tape symbols

3. b ϵ ┌ is the blank.

4. ∑ is a nonempty set of input symbols and is a subset of ┌ and b ϵ:∑

5. δ is the transition function mapping (q, x) onto (q’, y, D) where D denotes the

direction of movement of R!W head: D =L or R according as the movement is to the

left or right.

6. 6. qo E Q is the initial state

7. 7. F Ϲ Q is the set of final states.

REPRESENTATION OF TURING MACHINES

(i) Instantaneous descriptions using move-relations.

(ii) Transition table. And

(iii) Transition diagram (transition graph).

INSTANTANEOUS DESCRIPTIONS OF TURING MACHINE

An ID of a Turing machine M is a string αßγ, where ß is the present state of M, the entire

input string is split as αγ, the first symbol of γ is the current symbol α under the R/W head

and γ has all the subsequent symbols of the input string, and the string α is the substring of

the input string formed by all the symbols to the left of α.

TYPES OF TURING MACHINE

1. Multiple track Turing Machine:

 A k-tack Turing machine(for some k>0) has k-tracks and one R/W head that reads and

writes all of them one by one.

 A k-track Turing Machine can be simulated by a single track Turing machine

2. Two-way infinite Tape Turing Machine:

 Infinite tape of two-way infinite tape Turing machine is unbounded in both directions

left and right.

 Two-way infinite tape Turing machine can be simulated by one-way infinite Turing

machine(standard Turing machine).

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 2

3. Multi-tape Turing Machine:

 It has multiple tapes and controlled by a single head.

 The Multi-tape Turing machine is different from k-track Turing machine but

expressive power is same.

 Multi-tape Turing machine can be simulated by single-tape Turing machine.

4. Multi-tape Multi-head Turing Machine:

 The multi-tape Turing machine has multiple tapes and multiple heads

 Each tape controlled by separate head

 Multi-Tape Multi-head Turing machine can be simulated by standard Turing

machine.

5. Multi-dimensional Tape Turing Machine:

 It has multi-dimensional tape where head can move any direction that is left, right, up

or down.

 Multi dimensional tape Turing machine can be simulated by one-dimensional Turing

machine

6. Multi-head Turing Machine:

 A multi-head Turing machine contains two or more heads to read the symbols on the

same tape.

 In one step all the heads sense the scanned symbols and move or write independently.

 Multi-head Turing machine can be simulated by single head Turing machine.

7. Non-deterministic Turing Machine:

 A non-deterministic Turing machine has a single, one way infinite tape.

 For a given state and input symbol has atleast one choice to move (finite number of

choices for the next move), each choice several choices of path that it might follow for a

given input string.

 A non-deterministic Turing machine is equivalent to deterministic Turing machine

8. Universal Turing Machine:

 A Turing machine is said to be universal Turing machine if it can accept:

o The input data, and

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 3

o An algorithm (description) for computing.

PARSING

In a natural language, parsing is the process of splitting a sentence into words. There are two

types of parsing, namely the top-down parsing and the bottomup parsing. Suppose we want to

parse the sentence "Ram ate a mango." If NP, VP, N. V, ART denote noun predicate, verb

predicate. noun. verb and article, then the top-down parsing can be done as follows:

S -> NPVP

 -> Name VP

 -> Ram V NP

 -> Ram ate ART N

 -> Ram ate a N

 -> Ram ate a mango

The bottom-up parsing for the same sentence is

Ram ate a mango -> Name ate a mango

 -> Name verb a mango

 -> Name V ART N

 -> NP VN P

 -> NP VP

TYPES OF PARSING

1. Top Down Parsing

2. Bottom Up Parsing

TOP DOWN PARSING

Top-down parsing can be viewed as the problem of constructing a parse tree for the input

string, starting from the root and creating the nodes of the parse tree in preorder.

Equivalently, top-down parsing can be viewed as finding a leftmost derivation for an input

string

 AMBIGUITY

A grammar that produces more than one parse tree for some sentence is said to be

ambiguous.

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 4

ELIMINATING LEFT RECURSION

A grammar is left recursive if it has a nonterminal A such that there is a derivation for some

string A=>+ Aα. Top-down parsing methods cannot handle left-recursive grammars, so a

transformation is needed to eliminate left recursion. The left-recursive pair of productions

A->Aα

could be replaced by the non-left-recursive productions:

A->ß A’

A’->α A’|ϵ

without changing the strings derivable from A.

ELIMINATING LEFT FACTORING

In general, if A->α ß1 | α ß2 are two A-productions, and the input begins with a nonempty

string derived from α1 we do not know whether to expand A to α ß1 or α ß2 . However, we may

defer the decision by expanding A to α A’ . Then, after seeing the input derived from α ,we

expand A’ to ß1 or ß2. That is, left-factored, the original productions become

A-> α A’

A’-> α ß1 | α ß2

FIRST and FOLLOW

FIRST

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more

terminals or ϵ can be added to any FIRST set.

1. If X is a terminal, then FIRST(X)={X}

2. If X is a nonterminal and X ->Y1Y2 …Yk is a production for some k > 1, then place a in

FIRST(X) if for some i, a is in FIRST(Yi), and ϵ is in all of FIRST(Y1),…,FIRST(Yi-1); that is,

Y1…Yi-1) =>* ϵ. If ϵ is in FIRST(Yj) for all j =1,2,…,k, then add ϵ to FIRST(X). For example,

everything in FIRST(Y1) is surely in FIRST(X). If Y1 does not derive ϵ, then we add nothing

more to FIRST(X), but if Y1=>* ϵ, then we add FIRST(Y2), and so on.

3. If X ->ϵ is a production, then add ϵ to FIRST(X).

FOLLOW

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input right endmarker.

2. If there is a production A->α B ß, then everything in FIRST(ß) except ϵ in FOLLOW(B).

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 5

3. If there is a production A->α B , or a production A->α B ß , where FIRST(ß) contains ϵ ,

then everything in FOLLOW(A) is in FOLLOW(B).

LL(1)

It is a Non Recursive Decent Parsing.Here the 1st L represents that the scanning of the Input

will be done from Left to Right manner and the second L shows that in this parsing technique

we are going to use Left most Derivation Tree. And finally, the 1 represents the number of

look-ahead, which means how many symbols are you going to see when you want to make a

decision.

ALGORITHM TO CONSTRUCT LL(1) PARSING TABLE:

Step 1: First check for left recursion in the grammar, if there is left recursion in the grammar

remove that and go to step 2.

Step 2: Calculate First() and Follow() for all non-terminals.

1. First(): If there is a variable, and from that variable, if we try to drive all the strings

then the beginning Terminal Symbol is called the First.

2. Follow(): What is the Terminal Symbol which follows a variable in the process of

derivation.

Step 3: For each production A –> α. (A tends to alpha)

1. Find First(α) and for each terminal in First(α), make entry A –> α in the table.

2. If First(α) contains ε (epsilon) as terminal than, find the Follow(A) and for each

terminal in Follow(A), make entry A –> α in the table.

3. If the First(α) contains ε and Follow(A) contains $ as terminal, then make entry A –> α

in the table for the $.

BOTTOM UP PARSING (SHIFT REDUCE PARSING)

Build the parse tree from leaves to root. Bottom-up parsing can be defined as an attempt to

reduce the input string w to the start symbol of grammar by tracing out the rightmost

derivations of w in reverse.

https://www.geeksforgeeks.org/removing-direct-and-indirect-left-recursion-in-a-grammar/
https://www.geeksforgeeks.org/first-set-in-syntax-analysis/
https://www.geeksforgeeks.org/follow-set-in-syntax-analysis/

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 6

A general shift reduce parsing is LR parsing. The L stands for scanning the input from left to

right and R stands for constructing a rightmost derivation in reverse.

Benefits of LR parsing:

1. Many programming languages using some variations of an LR parser. It should be

noted that C++ and Perl are exceptions to it.

2. LR Parser can be implemented very efficiently.

3. Of all the Parsers that scan their symbols from left to right, LR Parsers detect

syntactic errors, as soon as possible.

LR(0)

We need two functions

1. Closure()

2. Goto()

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 7

Augmented Grammar

If G is a grammar with start symbol S then G’, the augmented grammar for G, is the

grammar with new start symbol S’ and a production S’ -> S. The purpose of this new starting

production is to indicate to the parser when it should stop parsing and announce acceptance

of input.

LR(0) Items

An LR(0) is the item of a grammar G is a production of G with a dot at some position in the

right side.

Closure Operation

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I by

the two rules:

1. Initially every item in I is added to closure(I).

2. If A -> α.Bβ is in closure(I) and B -> γ is a production then add the item B -> .γ to I, If

it is not already there. We apply this rule until no more items can be added to

closure(I).

Construction of GOTO graph-

 State I0 – closure of augmented LR(0) item

 Using I0 find all collection of sets of LR(0) items with the help of DFA

 Convert DFA to LR(0) parsing table

Construction of LR(0) parsing table:

 The action function takes as arguments a state i and a terminal a (or $, the input end

marker). The value of ACTION[i, a] can have one of four forms:

1. Shift j, where j is a state.

2. Reduce A -> β.

3. Accept

4. Error

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 8

SLR(1)

The SLR parser is similar to LR(0) parser except that the reduced entry. The reduced

productions are written only in the FOLLOW of the variable whose production is reduced.

Construction of SLR parsing table –

1. Construct C = { I0, I1, ……. In}, the collection of sets of LR(0) items for G’.

2. State i is constructed from Ii. The parsing actions for state i are determined as follow :

 If [A -> ?.a?] is in Ii and GOTO(Ii , a) = Ij , then set ACTION[i, a] to “shift j”.

Here a must be terminal.

 If [A -> ?.] is in Ii, then set ACTION[i, a] to “reduce A -> ?” for all a in

FOLLOW(A); here A may not be S’.

 Is [S -> S.] is in Ii, then set action[i, $] to “accept”. If any conflicting actions are

generated by the above rules we say that the grammar is not SLR.

3. The goto transitions for state i are constructed for all nonterminals A using the rule:

if GOTO(Ii , A) = Ij then GOTO [i, A] = j.

4. All entries not defined by rules 2 and 3 are made error.

LR(1)

Closure Operation

Closure(I)

repeat

 for (each item [A -> ?.B?, a] in I)

 for (each production B -> ? in G’)

 for (each terminal b in FIRST(?a))

 add [B -> .? , b] to set I;

until no more items are added to I;

return I;

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 9

Goto Operation

Goto(I, X)

Initialise J to be the empty set;

for (each item A -> ?.X?, a] in I)

 Add item A -> ?X.?, a] to se J; /* move the dot one step */

return Closure(J); /* apply closure to the set */

Construction of GOTO graph

 State I0 – closure of augmented LR(1) item.

 Using I0 find all collection of sets of LR(1) items with the help of DFA

 Convert DFA to LR(1) parsing table

Construction of CLR parsing table

Input – augmented grammar G’

1. Construct C = { I0, I1, ……. In} , the collection of sets of LR(0) items for G’.

2. State i is constructed from Ii. The parsing actions for state i are determined as follow :

i) If [A -> ?.a?, b] is in Ii and GOTO(Ii , a) = Ij, then set ACTION[i, a] to “shift j”.

ii) If [A -> ?. , a] is in Ii , A ≠ S, then set ACTION[i, a] to “reduce A -> ?”.

iii) Is [S -> S., $] is in Ii, then set action[i, $] to “accept”.

If any conflicting actions are generated by the above rules we say that the grammar is

not CLR.

3. The goto transitions for state i are constructed for all nonterminals A using the rule: if

GOTO(Ii, A) = Ij then GOTO [i, A] = j.

4. All entries not defined by rules 2 and 3 are made error.

TURING MACHINE AND PARSING

Prof.PRIYANGA K.K, Computer Science Department

 10

LALR

LALR parser are same as CLR parser with one difference. In CLR parser if two states differ

only in lookahead then we combine those states in LALR parser. After minimisation if the

parsing table has no conflict that the grammar is LALR also.

Important Notes

1. Even though CLR parser does not have RR conflict but LALR may contain RR conflict.

2. If number of states LR(0) = n1,number of states SLR = n2,number of states LALR =

n3,number of states CLR = n4 then, n1 = n2 = n3 <= n4

3.LR(1) parsers are more powerful parser

