Measures of Central Tendency

There are three measures of central tendencies:

mean

median

Mean

The **Arithmetic Mean** or simply **Mean** is the average of the numbers: a calculated "central" value of a set of numbers.

To calculate it:

- add up all the numbers,
- then divide by how many numbers there are.

Example : Data Set = 3, 5, 1,4, 7, 6, 8, 2, 9 Number of Elements in Data Set = 9 Mean =(3+5+1+4+7+6+8+2+9)/9 = 45/9=5

RGui (32-bit)

File Edit Packages Windows Help

Median

The median is the middle number in a sorted, ascending or descending, list of numbers and can be more descriptive of that data set than the average.

Examples : Odd Number of Elements

Data Set = 1, 5, 9, 3, 5, 4, 8 Reordered = 1, 3, 4, 5, 5, 8, 9 Median = 5

Examples : Even Number of Elements Data Set = 1, 5, 8, 3, 5, 4 Reordered = 1, 3, 4, 5, 5, 8 Median = (4 + 5) / 2 = 4.5

RGui (32-bit)

File Edit Packages Windows Help

Mode

The mode is the value that appears most frequently in a data set. A set of data may have one mode, more than one mode, or no mode at all.

Examples:

```
Single Mode Data Set = 1, 5, 8, 3, 5, 4, 7
Mode = 5
```

Examples:

```
Bimodal Data Set = 2, 5, 2, 1, 5, 4, 9
Modes = 2 and 5
```

Examples:

Trimodal Data Set = 2, 5, 2, 8, 5, 6, 8 Modes = 2, 5, and 8

RGui (32-bit)

File Edit Packages Windows Help

🗃 🖬 🖬 🚍 🎒 R Console R Untitled - R Editor Data =c(1, 5, 8, 3, 5, 4, 7) > Data =c(1, 5, 8, 3, 5, 4, 7) t=table(as.vector(Data)) > t=table(as.vector(Data)) names(t)[t==max(t)] > names(t)[t==max(t)] Data1 = c(2, 5, 2, 1, 5, 4, 9)[1] "5" tl=table(as.vector(Datal)) > Data1= c(2, 5, 2, 1, 5, 4, 9)names(t1)[t1==max(t1)] > tl=table(as.vector(Datal)) Data2 =c(2, 5, 2, 8, 5, 6, 8) > names(tl)[tl==max(tl)] t2=table(as.vector(Data2)) [1] "2" "5" names(t2) [t2==max(t2)]> Data2 =c(2, 5, 2, 8, 5, 6, 8) > t2=table(as.vector(Data2)) > names(t2)[t2==max(t2)] [1] "2" "5" "8" > > W. < 2 1

Mean- Average Median - Middle of the data set Mode - Most often

Measures of Dispersion

The important measures of dispersion is given by:

Semi Inter quartile range

Standard deviation

Coefficient of variation

RANGE

The Range is the difference between the lowest and highest values in a data set

RGui (32-bit)

<

File Edit Packages Windows Help

R Console		R Untitled - R Editor	
<pre>> x=c(8, 11, 5, 9, 7, 6, 3616) > a=max(x) > b=min(x) > range=a-b > range [1] 3611 > </pre>	•	<pre>x=c(8, 11, 5, 9, 7, 6, 3616) a=max(x) b=min(x) range=a-b range</pre>	

Semi Inter Quartile Deviation

It depends on the lower quartile Q1 and the upper quartile Q3.

The difference Q3–Q1 is called the inter quartile range.

The difference Q3–Q1 divided by 2 is called semi-inter quartile range

or the quartile deviation.

R Console R Untitled - R Editor x=c(8, 11, 5, 9, 7, 6, 36,16) x=c(8, 11, 5, 9, 7, 6, 36,16) semiiqr=(IQR(x))/2 semiiqr=(IQR(x))/2 semiiqr] 2.75 semiiqr

Standard Deviation

Standard deviation is the square root of the average of squared deviations of the items from their mean. Symbolically it is represented by σ

File	Edit	Packages	Windows	Help
------	------	----------	---------	------

R Console	🐨 Untitled - R Editor
<pre>> x=c(14,36,45,70,105) > sd=sd(x) > sd [1] 34.86402 ></pre>	x=c(14,36,45,70,105) sd=sd(x) sd
For Finding variance of a data set by simply running the co <i>var(data)</i>	le
۲ ۲ ۲	

Coefficient of Variation

When comparison has to be made between two series then the relative measure of dispersion, known as coefficient of variation is used. $cv = \frac{\sigma}{\overline{x}} \times 100$

Example

Problem Statement:

From the following data. Identify the risky project, is more risky:

Year	1	2	3	4	5
Project X (Cash profit in Rs. lakh)	10	15	25	30	55
Project Y (Cash profit in Rs. lakh)	5	20	40	40	30

é 🖞 🖬 🖻 🕄 🝚 🎒

R Console	🕼 Untitled - R Editor
> x=c(10,15,25,30,55)	x=c(10,15,25,30,55)
> m [1] 27	mx=mean(x)
> $sdx=sd(x)$ > sdx	m
<pre>[1] 17.53568 > cvx=(sdx/m)*100</pre>	sdx=sd(x)
> cvx [1] 64.94696	sdx
> y=c(5,20,40,40,30) > my=mean(y)	cvx=(sdx/m)*100
> sdy=sd(y) > cvy=(sdy/my)*100	CVX
> cvy [1] 54.9348	y=c(5,20,40,40,30)
<pre>> #Since coeff.of variation is higher for project X than for project Y, hence d\$ ></pre>	my=mean(y)
	sdy=sd(y)
	cvy=(sdy/my)*100
× ۲	

Since coeff.of variation is higher for project X than for project Y, hence project X is more risky.